Вч приставка к осциллографу. Проведение измерений с помощью осциллографа Время нарастания входного сигнала

Цифровой осциллограф, конечно, намного совершеннее обычного электронного, позволяет запоминать осциллограммы, может подключаться к персональному компьютеру, имеет математическую обработку результатов, экранные маркеры и многое другое. Но при всех достоинствах эти приборы нового поколения обладают одним существенным недостатком, - это высокая цена.

Именно она делает цифровой осциллограф недоступным для любительских целей, хотя существуют «карманные» осциллографы стоимостью всего в несколько тысяч рублей, которые продаются на Алиэкспресс, но пользоваться ими не особенно удобно. Ну, просто интересная игрушка. Поэтому пока речь пойдет об измерениях с помощью электронного осциллографа.

На тему выбора осциллографа для использования в домашней лаборатории в интернете можно найти достаточное количество форумов. Не отрицая достоинств цифровых осциллографов, на многих форумах советуют остановить выбор на простых малогабаритных и надежных осциллографах отечественной разработки С1-73 и С1-101 и подобных, с которыми мы ранее познакомились в .

При достаточно демократичной цене эти приборы позволят выполнить большинство радиолюбительских задач. А пока познакомимся с общими принципами измерений с помощью осциллографа.

Рисунок 1. Осциллограф С1-73

Что измеряет осциллограф

Измеряемый сигнал подается на вход канала вертикального отклонения Y, который имеет большое входное сопротивление, как правило, 1MΩ, и малую входную емкость, не более 40pF, что позволяет вносить минимальные искажения в измеряемый сигнал. Эти параметры часто указываются рядом с входом канала вертикального отклонения.

Рисунок 2. Осциллограф С1-101

Высокое входное сопротивление свойственно вольтметрам, поэтому можно с уверенностью сказать, что осциллограф измеряет напряжение. Применение внешних входных делителей позволяет снизить входную емкость и увеличить входное сопротивление. Это также снижает влияние осциллографа на исследуемый сигнал.

Полоса пропускания канала Y

Осциллограф измеряет напряжения в очень широких пределах: от напряжений постоянного тока, до напряжений достаточно высокой частоты. Размах напряжения может быть достаточно разнообразным, - от десятков милливольт до десятков вольт, а при использовании внешних делителей вплоть до нескольких сотен вольт.

При этом следует иметь в виду, что полоса пропускания канала вертикального отклонения Y д.б. не менее, чем в 5 раз выше частоты сигнала, который будет измеряться. То есть усилитель вертикального отклонения должен пропускать не ниже пятой гармоники исследуемого сигнала. Особенно это требуется при исследовании прямоугольных импульсов, которые содержат множество гармоник, как показано на рисунке 3. Только в этом случае на экране получается изображение с минимальными искажениями.

Рисунок 3. Синтез прямоугольного сигнала из гармонических составляющих

Кроме основной частоты на рисунке 3 показаны третья и седьмая гармоники. С увеличением номера гармоники возрастает ее частота: частота третьей гармоники в три раза выше основной, пятой гармоники в пять раз, седьмой в семь и т.д. Соответственно амплитуда высших гармоник падает: чем выше номер гармоники, тем ниже ее амплитуда. Только если усилитель вертикального канала без особого ослабления сможет пропустить высшие гармоники, изображение импульса получится прямоугольным.

На рисунке 4 показана осциллограмма меандра при недостаточной полосе пропускания канала Y.

Рисунок 4.

Примерно так выглядит меандр частотой 500 КГц на экране осциллографа ОМШ-3М с полосой пропускания 0…25 КГц. Как будто прямоугольные импульсы пропущены через интегрирующую RC цепочку. Такой осциллограф выпускался советской промышленностью для лабораторных работ на уроках физики в школах. Даже напряжение питания этого прибора в целях безопасности было не 220, а всего 42В. Совершенно очевидно, что осциллограф с такой полосой пропускания позволит почти без искажений наблюдать сигнал с частотами не более 5КГц.

У обычного универсального осциллографа полоса пропускания чаще всего составляет 5 МГц. Даже при такой полосе можно увидеть сигнал до 10 МГц и выше, но полученное на экране изображение позволяет судить лишь о наличии или отсутствии этого сигнала. О его форме что-либо сказать будет затруднительно, но в некоторых ситуациях форма не столь уж и важна: например есть генератор синусоиды, и достаточно просто убедиться, есть эта синусоида или ее нет. Как раз такая ситуация показана на рисунке 4.

Современные вычислительные системы и линии связи работают на очень высоких частотах, порядка сотен мегагерц. Чтобы увидеть столь высокочастотные сигналы полоса пропускания осциллографа должна быть не менее 500 МГц. Такая широкая полоса очень «расширяет» цену осциллографа.

В качестве примера можно привести цифровой осциллограф U1610A показанный не рисунке 5. Его полоса пропускания 100МГц, при этом цена составляет почти 200 000 рублей. Согласитесь, не каждый может позволить себе купить столь дорогой прибор.

Рисунок 5.

Пусть читатель не сочтет этот рисунок за рекламу, поскольку все координаты продавца не закрашены: на месте этого рисунка мог оказаться любой подобный скриншот.

Виды исследуемых сигналов и их параметры

Наиболее распространенным видом колебаний в природе и технике является синусоида. Это та самая многострадальная функция Y=sinX, которую проходили в школе на уроках тригонометрии. Достаточно много электрических и механических процессов имеют синусоидальную форму, хотя достаточно часто в электронной технике применяются и другие формы сигналов. Некоторые из них показаны на рисунке 6.

Рисунок 6. Формы электрических колебаний

Периодические сигналы. Характеристики сигналов

Универсальный электронный осциллограф позволяет достаточно точно исследовать периодические сигналы. Если же на вход Y подать реальный звуковой сигнал, например, музыкальную фонограмму, то на экране будут видны хаотично мелькающие всплески. Естественно, что детально исследовать такой сигнал невозможно. В этом случае поможет применение цифрового запоминающего осциллографа, который позволяет сохранить осциллограмму.

Колебания, показанные на рисунке 6, являются периодическими, повторяются, через определенный период времени T. Подробнее это можно рассмотреть на рисунке 7.

Рисунок 7. Периодические колебания

Колебания изображены в двухмерной системе координат: по оси ординат отсчитывается напряжение, а по оси абсцисс время. Напряжение измеряется в вольтах, время в секундах. Для электрических колебаний время чаще измеряется в миллисекундах или микросекундах.

Кроме компонентов X и Y осциллограмма содержит еще компонент Z - интенсивность, или попросту (рисунок 8). Именно она включает луч на время прямого хода луча и гасит на время обратного хода. Некоторые осциллографы имеют вход для управления яркостью, который так и называется вход Z. Если на этот вход подать импульсное напряжение от образцового генератора, то на экране можно увидеть частотные метки. Это позволяет точнее отсчитывать длительность сигнала по оси X.

Рисунок 8. Три компонента исследуемого сигнала

Современные осциллографы имеют, как правило, калиброванные по времени развертки, позволяющие точно отсчитывать время. Поэтому пользоваться внешним генератором для создания меток практически не приходится.

В верхней части рисунка 7 располагается синусоида. Нетрудно видеть, что начинается она в начале координатной системы. За время T (период) выполняется одно полное колебание. Далее все повторяется, идет следующий период. Такие сигналы называются периодическими.

Ниже синусоиды показаны прямоугольные сигналы: меандр и прямоугольный импульс. Они также периодические с периодом T. Длительность импульса обозначена как τ (тау). В случае меандра длительность импульса τ равна длительности паузы между импульсами, как раз половина периода T. Поэтому меандр является частным случаем прямоугольного сигнала.

Скважность и коэффициент заполнения

Для характеристики прямоугольных импульсов используется параметр, называемый скважностью. Это есть отношение периода следования импульсов T к длительности импульса τ. Для меандра скважность равна двум, - величина безразмерная: S= T/τ.

В англоязычной терминологии как раз все наоборот. Там импульсы характеризуются коэффициентом заполнения, соотношением длительности импульса к периоду следования Duty cycle: D=τ/T. Коэффициент заполнения выражается в %%. Таким образом, для меандра D=50%. Получается, что D=1/S, коэффициент заполнения и скважность величины взаимно обратные, хотя характеризуют собой один и тот же параметр импульса. Осциллограмма меандра показана на рисунке 9.

Рисунок 9. Осциллограмма меандра D=50%

Здесь вход осциллографа подключен к выходу функционального генератора, показанного тут же в нижнем углу рисунка. И вот тут внимательный читатель может задать вопрос: «Амплитуда выходного сигнала с генератора 1В, чувствительность входа осциллографа 1В/дел., а на экране прямоугольные импульсы с размахом 2В. Почему?»

Дело в том, что функциональный генератор выдает двухполярные прямоугольные импульсы относительно уровня 0В, примерно так же, как синусоида, с положительной и отрицательной амплитудой. Поэтому на экране осциллографа наблюдаются импульсы с размахом ±1В. На следующем рисунке изменим коэффициент заполнения Duty cycle, например, до 10%.

Рисунок 10. Прямоугольный импульс D=10%

Нетрудно видеть, что период следования импульсов составляет 10 клеток, в то время, как длительность импульса всего одна клетка. Поэтому D=1/10=0,1 или 10 %, что видно по настройкам генератора. Если воспользоваться формулой для подсчета скважности, то получится S = T / τ = 10 / 1 = 1 - величина безразмерная. Вот здесь можно сделать вывод, что Duty cycle намного наглядней характеризует импульс, чем скважность.

Собственно сам сигнал остался такой же, как на рисунке 9: прямоугольный импульс амплитудой 1В и частотой 100Гц. Изменяется только коэффициент заполнения или скважность, уж это как кому привычней и удобней. Но для удобства наблюдения на рисунке 10 длительность развертки снижена в два раза по сравнению с рисунком 9 и составляет 1мс/дел. Поэтому период сигнала занимает на экране 10 клеток, что позволяет достаточно легко убедиться, что Duty cycle составляет 10%. При пользовании реальным осциллографом длительность развертки выбирается примерно также.

Измерение напряжения прямоугольного импульса

Как было сказано в начале статьи, осциллограф измеряет напряжение, т.е. разность потенциалов между двумя точками. Обычно измерения проводятся относительно общего провода, земли (ноль вольт), хотя это необязательно. В принципе возможно измерение от минимального до максимального значения сигнала (пиковое значение, размах). В любом случае действия по измерению достаточно просты.

Прямоугольные импульсы чаще всего бывают однополярными, что характерно для цифровой техники. Как измерить напряжение прямоугольного импульса, показано на рисунке 11.

Рисунок 11. Измерение амплитуды прямоугольного импульса

Если чувствительность канала вертикального отклонения выбрана 1В/дел, то получается, что на рисунке показан импульс с напряжением 5,5В. При чувствительности 0,1В/дел. Напряжение будет всего 0,5В, хотя на экране оба импульса выглядят совершенно одинаково.

Что еще можно увидеть в прямоугольном импульсе

Прямоугольные импульсы, показанные на рисунках 9, 10 просто идеальные, поскольку синтезированы программой Electronics WorkBench. Да и частота импульсов всего 100Гц, поэтому проблем с «прямоугольностью» изображения возникнуть не может. В реальном устройстве при высокой частоте следования импульсы несколько искажаются, прежде всего, появляются различные выбросы и всплески, обусловленные индуктивностью монтажа, как показано на рисунке 12.

Рисунок 12. Реальный прямоугольный импульс

Если не обращать внимания на подобные «мелочи», то прямоугольный импульс выглядит так, как показано на рисунке 13.

Рисунок 13. Параметры прямоугольного импульса

На рисунке показано, что передний и задний фронты импульса возникают не сразу, а имеют какое-то время нарастания и спада, несколько наклонены относительно вертикальной линии. Этот наклон обусловлен частотными свойствами микросхем и транзисторов: чем более высокочастотный транзистор, тем менее «завалены» фронты импульсов. Поэтому длительность импульса определяется по уровню 50% от полного размаха.

По этой же причине амплитуда импульса определяется по уровню 10…90%. Длительность импульса, так же, как и напряжение, определяется умножением числа делений горизонтальной шкалы на значение деления, как показано на рисунке 14.

Рисунок 14.

На рисунке показан один период прямоугольного импульса, несколько отличного от меандра: длительность положительного импульса составляет 3,5 деления горизонтальной шкалы, а длительность паузы 3,8 деления. Период следования импульса составляет 7,3 деления. Такая картинка может принадлежать нескольким разным импульсам с различной частотой. Все будет зависеть от длительности развертки.

Предположим, что длительность развертки 1мс/дел. Тогда период следования импульса 7,3*1=7,3мс, что соответствует частоте F=1/T=1/7.3= 0,1428КГц или 143ГЦ. Если длительность развертки будет 1мкс/дел, то частота получится в тысячу раз выше, а именно 143КГЦ.

Пользуясь данными рисунка 14 нетрудно подсчитать скважность импульса: S=T/τ=7,3/3,5=2,0857, получается почти, как у меандра. Коэффициент заполнения Duty cycle D=τ/T=3,5/7,3=0,479 или 47.9%. При этом следует обратить внимание, что эти параметры ни в коем случае не зависят от частоты: скважность и коэффициент заполнения были подсчитаны просто по делениям на осциллограмме.

С прямоугольными импульсами все вроде бы понятно и просто. Но мы совсем забыли о синусоиде. В сущности, там то - же самое: можно измерить напряжения и временные параметры. Один период синусоиды показан на рисунке 15.

Рисунок 15. Параметры синусоиды

Очевидно, что для показанной на рисунке синусоиды чувствительность канала вертикального отклонения составляет 0,5В/дел. Остальные параметры нетрудно определить умножив число делений на 0,5В/дел.

Синусоида может быть и другой, которую придется измерять при чувствительности, например, 5В/дел. Тогда вместо 1В получится 10В. Однако, на экране изображение обеих синусоид выглядит абсолютно одинаково.

Временные параметры показанной синусоиды неизвестны. Если предположить, что длительность развертки 5мс/дел., период составит 20мс, что соответствует частоте 50ГЦ. Цифры в градусах на оси времени показывают фазу синусоиды, хотя для одиночной синусоиды это не особо важно. Чаще приходится определять сдвиг по фазе (непосредственно в миллисекундах или микросекундах) хотя бы между двумя сигналами. Лучше всего это делать с помощью двухлучевого осциллографа. Как это делается, будет показано чуть ниже.

Как осциллографом измерить ток

В некоторых случаях требуется измерение величины и формы тока. Например, переменный ток, протекающий через конденсатор, опережает напряжение на ¼ периода. Тогда в разрыв цепи включают резистор с небольшим сопротивлением (десятые доли Ома). На работу схемы такое сопротивление не влияет. Падение напряжения на этом резисторе покажет форму и величину тока, протекающего через конденсатор.

Примерно так же устроен обычный стрелочный амперметр, который включатся в разрыв электрической цепи. При этом измерительный резистор находится внутри самого амперметра.

Схема для измерения тока через конденсатор показана на рисунке 16.

Рисунок 16. Измерение тока через конденсатор

Синусоидальное напряжение частотой 50 Гц амплитудой 220 В с генератора XFG1 (красный луч на экране осциллографа) подается на последовательную цепь из конденсатора C1 и измерительного резистора R1. Падение напряжения на этом резисторе покажет форму, фазу и величину тока через конденсатор (синий луч). Как это будет выглядеть на экране осциллографа, показано на рисунке 17.

Рисунок 17. Ток через конденсатор опережает напряжение на ¼ периода

При частоте синусоиды 50 Гц и развертке 5 ms/Div один период синусоиды занимает 4 деления по оси X, что очень удобно для наблюдения. Нетрудно видеть, что синий луч опережает красный ровно на 1 деление по оси X, что соответствует ¼ периода. Другими словами ток через конденсатор опережает по фазе напряжение, что полностью соответствует теории.

Чтобы рассчитать ток через конденсатор достаточно воспользоваться законом Ома: I = U/R. При сопротивлении измерительного резистора 0,1Ом падение напряжения на нем 7мВ. Это амплитудное значение. Тогда максимальный ток через конденсатор составит 7/0,1=70мА.

Измерение формы тока через конденсатор не является какой-то очень актуальной задачей, тут все ясно и без измерений. Вместо конденсатора может быть любая нагрузка: , обмотка электродвигателя, транзисторный усилительный каскад и многое другое. Важно, что именно таким методом можно исследовать ток, который в некоторых случаях значительно отличается по форме от напряжения.

При осциллографических измерениях в высокочастотных устройствах входная емкость делителя может вносить значительные искажения в настраиваемый узел (например, при подключении пробника к контуру ВЧ генератора и т.п.). Делители с коэффициентом 1:1 имеют входную емкость порядка 100 пф и более (емкость кабеля плюс входная емкость осциллографа), что существенно ограничивает их частотный диапазон. В то же время стандартные пассивные делители 1:10 с входной емкостью 12 – 17 пф снижают чувствительность осциллографа до 50 мВ на деление (при максимальной чувствительности по входу равной 5 мВ / деление, типичной для большинства промышленных осциллографов), а также имеют все еще слишком большую входную емкость для проведения неискажающих измерений в ВЧ цепях, где емкости контуров могут иметь такое же значение.

Данная проблема решается использованием для измерений специальных активных пробников, выпускаемых для этой цели (например, фирмой Tektronix). Однако, эти устройства довольно трудно найти и их цена (от $150 и выше) сопоставима с ценой хорошего б/у осциллографа. В то же время не представляет большой сложности самостоятельно изготовить простой активный осциллографический пробник с малой входной емкостью, что и было сделано автором.

Активный осциллографический пробник предназначен для измерений переменных напряжений в низковольтных ВЧ схемах и имеет следующие характеристики:

  • Диапазон измеряемых амплитудных значений сигнала – от 10 мВ до 10 В
  • Частотная характеристика – линейна от 10 КГц до 100 МГц при малом сигнале
  • Выходной сигнал – инвертированный, с коэффициентом деления 1:2
  • Напряжение питания – 12 вольт (4 * CR2025) или внешний источник
  • Входная емкость – 0.5 пф (0.25 пф с внешним делителем 1: 10)
  • Входное сопротивление – 100 килоом
  • Потребляемый ток – 10 мА
  • Размеры 60 х 33 х 16 мм

Внешний вид изготовленного прибора приведен на фото.

Конструкция прибора

Принципиальная схема пробника приведена на рисунке. Прибор собран на трех малошумящих СВЧ транзисторах 2SC3356 с граничной частотой 7 ГГц. Коэффициент усиления по напряжению составляет около 23 дб. Выходной эмиттерный повторитель служит для дополнительной развязки усилителя от нагрузки и может быть исключен, если пробник будет использоваться с одним и тем же осциллографом. Цепочка из светодиода, стабилитрона на 9 вольт и резистора служит индикатором включения и пороговым индикатором напряжения батареи питания. Питающее напряжение 12 вольт необходимо и достаточно для того, чтобы получать на выходе прибора максимальное амплитудное значение измеряемого сигнала до 5 вольт, и тем самым обеспечивать максимальный динамический диапазон до 50 дб при проведении измерений с установкой коэффициента отклонения, начиная от 5 мВ на деление (чувствительность большинства осциллографов).

Конструктивно прибор может быть собран в любом подходящем пластмассовом корпусе. Главное требование к материалу корпуса – прочность и низкие потери материала на высоких частотах. Для уменьшения входной емкости пробника не следует размещать его в металлическом корпусе: при входном сопротивлении 100 килоом и малой длине соединений внутри корпуса внешние наводки не играют роли, особенно если учесть, что нижняя граница частотного диапазона была сознательно выбрана намного выше частоты электрической сети.

Пробник включается нажатием кнопки в момент проведения измерений, что гарантирует работу прибора без замены внутреннего источника питания в течение длительного времени. Кроме того, как видно на фото, кнопка включения защищена от случайного нажатия, когда прибор не используется для работы. Для работы в непрерывном режиме предусмотрен разъем для подключения внешнего источника питания 12 вольт, 10 мА.

Внутренний вид прибора показан на фотографии. Металлическая упругая пластина с четырьмя винтами фиксирует пакет из расположенных под ней четырех литиевых батарей CR2325. Выходной коаксиальный кабель должен быть надежно закреплен прижимной пластиной на винтах, как видно на фото. Входной СВЧ усилитель смонтирован на подходящей миниатюрной плате (автор применил керамическую плату размерами 10 х 10 миллиметров с 12 точками для припайки выводов, от элемента этажерочного микромодуля – эти детали изготовлялись в 60-е годы до появления микросхем и весьма удобны для изготовления миниатюрных схем с современными SMD компонентами).




Налаживание

Этот этап работы должен быть проведен весьма тщательно для получения нужного результата.

  1. После сборки усилителя необходимо прежде всего точно установить его рабочую точку подбором резистора на 120 килоом для получения максимальной амплитуды неискаженного сигнала на выходе. В данной схеме и при свежих элементах питания этот режим достигается при установке постоянного напряжения от +5.2 до +5.3 вольта на эмиттере второго транзистора. Рабочая точка второго эмиттерного повторителя не требует настройки при указанных номиналах резисторов.
  2. Далее следует точно подобрать значение нижнего по схеме резистора (в данном случае 20 килоом) входного делителя для получения требуемого маштаба (1: 2) передачи сигнала между входом и выходом прибора на относительно низкой частоте (порядка 100 КГц). Заметим, что входное сопротивление усилителя при указанных номиналах деталей составляет около 5 килоом (на той же частоте), так что при отсутствии указанного резистора коэффициент передачи устройства будет выше требуемого примерно на 3 дб (величина ослабления входного сигнала равняется (105 / 5) = 26 дб, в то время как общий коэффициент усиления схемы равен 23 дб, а требуемый коэффициент передачи всего устройства должен быть равен 0.5, т.е. минус 6 дб).
  3. Подбор компенсирущих емкостей (0.5 пф параллельно резистору на 100 килоом, и подстроечный конденсатор в нижней ветви входного делителя) осуществляется путем сравнения коэффициента передачи на двух частотах, например, 1 МГц и 30 МГц, и подбора емкостей до получения нужного постоянного коэффициента передачи устройства. Далее производится окончательная проверка устройства на верхней рабочей частоте, если у радиолюбителя имеется такая возможность.
  4. В заключение проверяется фактическая входная емкость пробника на высокой частоте (например, подключением его к контуру с известными параметрами работающего генератора и контролем изменения частоты выходного сигнала по цифровому частотомеру или приемнику). При правильном выполнении конструкции прибора она не должна существенно отличаться от указанного на схеме значения (суммарная входная емкость в изготовленном автором пробнике, измеренная на частоте 20 МГц, составила 0.505 пф).

Замечания

Данный пробник создавался автором для измерений в цепях синусоидальных ВЧ сигналов в контурах генераторов и усилительных каскадов транзисторных схем, и он в целом решает поставленную задачу. Именно по этой причине в пробнике и был выбрано указанное выше соотношение между всеми основными параметрами прибора – его частотным диапазоном, высокой чувствительностью, достаточно большим входным сопротивлением и минимально возможной входной емкостью измерителя, а также небольшим потребляемым током. Радиотехника – это всегда компромисс при заданных разработчиком предельных значениях параметров.

Дмитрий
Киев

Попробуем разобраться в том, какую роль играет полоса пропускания, чувствительность и память осциллографа при измерениях, в каких случаях лучше использовать аналоговые и цифровые, двухканальные и двухлучевые осциллографы, а когда вместо современного стационарного цифрового или портативного осциллографа достаточно иметь под рукой старый советский прибор? Ответы на эти и другие вопросы, а также все типовые заблуждения, связанные с этими приборами, вы найдете в нашей подборке - 20 самых важных характеристик осциллографов!

Когда мы говорим «осциллограф», то представляем себе прибор, на лицевой панели которого расположен экран, отображающий графики входных электрических сигналов (амплитудные и временных характеристики). Однако поскольку видов этих сигналов «великое множество», очевидно, что не может быть одного универсального прибора, способного адекватно показать все. Поэтому, выбирая осциллограф, нужно ориентироваться во всех разновидностях этого «многоликого» по областям применения прибора, чтобы выбрать именно тот, который подходит для решения стоящих перед вами задач. И здесь немудрено запутаться или упустить какие-то моменты, что может привести к покупке «ненужного чуда» электронной техники. А чтобы не попасть впросак, стоит прислушаться к отзывам опытных практиков, помогающим системно подойти к своим запросам и сделать действительно безошибочный выбор. Далее разбираются основные параметры и технические характеристики осциллографов.

1. Чем хорош двухлучевой осциллограф?

Двухлучевой осциллограф позволяет двумя лучами одновременно наблюдать на общей временной развертке два независимых процесса. Двухканальный осциллограф содержит электронный коммутатор, коммутирующий либо намного чаще, чем частота процесса, либо намного реже, чем частота процесса два процесса на один луч. При этом получается, как бы два луча, но график отображается «кусками, хотя, если частота коммутации выбрана верно, то визуально это не заметно. Все это верно до тех пор, пока исследуются строго периодические процессы. Если же процессы импульсные или не строго периодические (форма сигнала отличается в разных периодах или период меняется), качественно наблюдать два таких процесса на двухканальном однолучевом осциллографе невозможно, потому что в каждый момент времени мы видим только кусочек одного процесса. В принципе двухлучевой осциллограф, конечно, намного лучше однолучевого двухканального. У двухлучевого есть и недостаток: вертикальная развертка каждого луча линейна в своей половине экрана, верхнего - в верхней, нижнего - в нижней. При попытке использовать весь экран одним лучом нас ждет разочарование - отклонение луча у двухлучевой ЭЛТ в «чужой» половине экрана существенно нелинейно.

2. Ограничения двухканального (многоканального) осциллографа

Двухканальный (многоканальный) осциллограф отличается от двухлучевого (многолучевого) тем, что у него одновременное наблюдение разных сигналов обеспечивается быстрым переключением с одного канала на другой, т. к. применяется однолучевая трубка. Из-за чего на высоких скоростях развертки он «рвет» сигналы на экране. Двухлучевой (многолучевой) - имеет трубку с несколькими лучами, поэтому он сигналы не «рвет», но стоит обычно дороже.

3. Любой осциллограф - это не измерительный, а наблюдательный прибор

Хотя в цифровых осциллографах используются также измерительные функции (можно, например, проводить измерения амплитуды сигнала и т. д.). У аналоговых осциллографов погрешность по экрану 5-10%. Цифровые, к которым относятся также USB-осциллографы, вроде более точные, но есть такое понятие, как «Вертикальное разрешение». Например, у типового USB-осциллографа - указано 9 бит вертикального разрешения (реально часто - 8 бит). Это значит, что входной сигнал, надо поделить на 2 в 8-й степени, то есть на 256, что при входном сигнале 10 В даст ступеньку в 0,4 В.

4. Цифровой или аналоговый осциллограф?

Выбор «цифровой или аналоговый осциллограф» зависит от характера исследуемых процессов. Цифровой имеет память, широчайшие возможности рассматривать уже зарегистрированные кратковременные сигналы (есть возможность делать их скриншоты), цветной дисплей (что очень способствует восприятию информации), множество способов синхронизации, некоторые возможности обработки сигнала. У аналогового - наименьшие искажения наблюдаемого сигнала, что обычно приводится как основной довод в их пользу. Других, более серьезных доводов обычно не приводят.

5. Цифровой осциллограф не покажет ВЧ импульсы

Еще одна особенность цифровых осциллографов: для наблюдения непрерывного сигнала, и для того, чтобы сильно не увеличивать частоту дискретизации (квантования) по времени (а это необходимо из-за того, что точных быстродействующих АЦП пока еще мало, а то и вовсе нет для решения каких-то задач), часто используются для обработки численные методы (аппроксимация, интерполяция, экстраполяция). Современные микроконтроллеры довольно просто с этой задачей справляются. Но в результате мы видим не настоящий сигнал, а эрзац-сигнал, полученный в результате обработки точечных отсчетов численными методами. То есть мы можем не увидеть на сигнале «иглы» высокочастотных импульсных помех, которые будут прекрасно видны на аналоговом осциллографе.

6. Цифровой осциллограф умеет запоминать сигналы

У цифрового осциллографа дополнительное удобство - он может запоминать сигнал и выводить его на экран в увеличенном масштабе (функция экранной лупы). А также достаточно просто реализуются функции автонастройки на сигнал и измерение параметров сигнала (но это уже в дорогих моделях). Еще одно важное достоинство - просмотр или предварительное (возможно и полное) декодирование промышленных протоколов.

Цифровой осциллограф работает на принципе преобразования аналогового (т. е. непрерывного) сигнала в цифровой (т. е. дискретный) со всеми вытекающими отсюда последствиями:

  • Для того чтобы передать сигнал как можно точнее, частота дискретизации должна быть намного выше частоты измеряемого сигнала. Т. е. чем больше дискретных отсчетов в единицу времени, тем более непрерывным будет отображение сигнала и более точным его воспроизведение на экране.
  • Дискретизация по уровню измеряемого сигнала (как правило, это напряжение). Чтобы его как можно точнее измерить, надо иметь хорошую дискретизацию по уровню. Допустим, мы имеем АЦП 8-бит. Теоретически он дает 256 уровней сигнала. Т. е. сигнал с амплитудой 10 В он может перевести в цифровой код с точностью 0,04 В, а если у АЦП 10 разрядов (1024 уровня), то мы сможем наблюдать этот же сигнал с точностью 0,01 В (правда, на самом деле точность будет ниже, из-за погрешности самого АЦП).
  • Многолучевым цифровой осциллограф в принципе быть не может.
  • Интерфейс для связи с компьютером имеют не только цифровые, но и многие аналоговые осциллографы.

8. Объем памяти цифрового осциллографа

Объем памяти выборок (в английской технической документации используются термины Record Length - длина записи или Memory Depth - глубина памяти) - третья ключевая характеристика цифровых осциллографов, наряду с полосой пропускания и частотой оцифровки. Суть в том, что это память, работающая на частоте оцифровки. Ее нехватка приводит к тому, что на медленных развертках осциллограф вынужден снижать частоту оцифровки во избежание переполнения памяти. Хотя есть «кривые» попытки обойти эту проблему, например, использованием пик-детектора. Если памяти выборок много (от 1 Мегасемплов), то это производителем специально подчеркивается, а если мало, то всячески замалчивается. Или приводится большой объем памяти, но оказывается, что это просто ОЗУ встроенного процессора, а не быстрая память выборок. Допустим, частота выборок - 500 мегавыборок в секунду (полоса пропускания - 50 МГц, 10 выборок на период). Смотрим сигнал 50 Гц (период 20 мс). За это время осциллограф сделает 10 000 000 выборок. С 8-битным АЦП ему надо запомнить 1 байт на выборку. Итого, чтобы зарисовать этот период, ему нужно либо 10 Мб памяти, либо снижать частоту выборок.

9. «Короткая и длинная» память в цифровом осциллографе

Короткая и длинная память - это «закон сохранения энергии в осциллографе». Если вы используете максимальную частоту дискретизации то у вас «короткая память» будет (извините за выражение), если же частота дискретизации будет в два раза меньше - то у вас память будет «ого-го». Если нужно посмотреть пачку импульсов - используете большую память, если периодический, но высокочастотный сигнал (тем более меандр), то тогда более важна частота дискретизации.

10. Время нарастания входного сигнала

Показатель «Время нарастания входного сигнала» - чем меньше, тем лучше. Это значит, что меньше будет «отгрызаться» начало первого сигнала на экране при внутренней синхронизации, и тем лучше частотные свойства осциллографа.

Считается, что для наблюдения цифровых сигналов полоса пропускания осциллографа должна быть в несколько раз выше частоты сигнала (хотя бы втрое), иначе прямоугольный сигнал превращается в «квазисинусоиду» (то есть «заваливаются» фронты). И частота дискретизации должна быть выше хотя бы раз в десять (некоторые даже считают, что это соотношение должно быть не менее 1:20).

12. Как связаны шумы и погрешность Разрешение экрана

Чем выше разрешение экрана, тем больше детализация. Выбирайте разрешение не менее 640 точек по горизонтали и не менее 480 точек по вертикали, многие современные относительно недорогие осциллографы уже имеют такие экраны. Экран должен быть цветным и с малой инерционностью. Черно-белые экраны с большой инерционностью - прошлый век.

13. Как связаны шумы и погрешность Когда нужен осциллограф с логическим анализатором?

Современная прикладная электроника - это в большинстве случаев «смесь цифры с аналогом». Расшифровка протоколов здесь не главное (хотя и не без нее). Но вот, допустим, имеем сигнал ШИМ, который в свою очередь может перейти во что угодно - ток, напряжение, температуру, магнитное поле, обороты и т. д. и т. п. Регулирование этих величин, допустим, выполняется с помощью микроконтроллера посредством какого-либо ПИД-регулятора. Как отрабатывать все тонкости этих процессов? Вот тут и придет на помощь встроенный в осциллограф логический анализатор. Конечно, все то же самое можно делать и отдельным анализатором, и синхронизировать его с аналоговыми сигналами. Но все это вы будете видеть на разных мониторах и засечь, что и после чего изменяется «от цифры в аналоге» уже будет очень неудобно и непродуктивно.

Таким образом, если вы собираетесь рассматривать цифровой и аналоговый сигналы одновременно, например, цифровой сигнал зависит (синхронизирован) от аналогового или наоборот, то лучшим решением будет осциллограф с логическим анализатором на борту или хотя бы с возможностью докупить логический анализатор позже (но нужно, чтобы у покупаемого осциллографа была такая опция). Отдельный логический анализатор удобен для работы с чистой цифрой.

14. Как связаны шумы и погрешность Как связаны шумы и погрешность осциллографа с разрешением экрана?

Шумы осциллографа не имеют никакого отношения к разрешению экрана. Точно так же и погрешность осциллографа не имеет никакого отношения к разрешению экрана.

15. Эквивалентный режим

Эквивалентный режим используется только для периодических сигналов. Он позволяет повысить частоту дискретизации в десятки раз. Суть в том, что друг за другом делается не одна запись сигнала, а много, но каждый раз с небольшим смещением. Поскольку сигнал все время одинаковый (периодический), потом полученные записи накладывают друг на друга, и получают запись с как-бы очень высокой частотой оцифровки, например 50 ГГц, хотя реальная частота оцифровки была обычная, например 500 МГц. Для однократных сигналов не годится.

16. Режим сегментированной памяти

Некоторые цифровые осциллографы имеют режим сегментированной памяти. То есть их можно оставить работать хоть на неделю, но они будут записывать не весь сигнал, а только его часть, форма которой задается через меню, например, только короткие пики. Таким образом, ни один пик не будет пропущен и будет записан с нужной (высокой) частотой дискретизации. А потом все записанные сегменты (кусочки сигнала) можно разом просмотреть.

17. Минусы портативных осциллографов

У портативных приборов цены выше, а параметры хуже, это известно. В частности, «настольные» осциллографы давно «доросли» до 1-2 мегасемплов (мегабайт) памяти выборок, а у портативных эта память по-прежнему 1-40 килосемплов (килобайт).

18. Что такое мотортестер?

Для диагностики системы зажигания автомобильного двигателя используется мотортестер, представляющий собой многоканальный осциллограф (осциллограф-мультиметр с четырьмя и более каналами), с инсталлированным в нем специальным ПО. К осциллографу подключается комплект датчиков. Мотортестер отображает осциллограмму высокого напряжения системы зажигания и в реальном времени параметры импульсов зажигания, такие как пробивное напряжение, время и напряжение горения искры.

19. Что такое автомобильный диагностический сканер?

Для «общей» автодиагностики применяют диагностический адаптер или CAN-Bus автомобильный диагностический сканер, представляющий собой осциллограф смешанных сигналов - осциллограф со встроенным логическим анализатором, который, используя специальное ПО, выполняет дешифровку протоколов CAN/KWP2000/др. и трактует полученные данные. Система управления современного двигателя, отвечающего строгим нормам токсичности, в качестве главного своего элемента содержит электронный блок управления (ЭБУ). Так вот сканер предназначен именно для работы с ЭБУ, для его «сканирования». А так как сканер работает с блоком, то он позволяет:

  • Наблюдать сигналы с датчиков системы, следить за их изменением во времени.
  • Проверять работу исполнительных механизмов путем приведения их в действие и визуального или другого контроля.
  • Считывать сохраненные системой коды неисправностей.
  • Посмотреть идентификационные данные ЭБУ, системы и т. п.

20. Почему лучше не использовать осциллографы, выпущенные в СССР?

В России до сих пор продаются осциллографы, выпущенные в СССР 25-30 лет назад. Они могут привлечь внимание разве что новичков и не очень требовательных радиолюбителей. Однако опытные практики пишут на страницах интернет-форумов буквально следующее: «Ни в коем случае не советую связываться с советскими приборами, тем более осциллографами, управляемыми микропроцессором. Советские приборы утыканы сбоку и сверху подстроечниками для калибровки. Методика описана в инструкции, обычно довольно бестолковой. Перечень «пороков» советских приборов продолжают габариты, вес и высохшие электролиты».

Примечание.

При подготовке этой статьи использовались отзывы, советы и рекомендации по выбору и работе с электронными осциллографами, собранные с крупнейших отечественных и зарубежных интернет-форумов.

Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: "Какой самый главный прибор на вашем рабочем месте?" Ответ будет однозначным: "Конечно, осциллограф!". И это действительно так.

Конечно, невозможно обойтись без мультиметра . Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.

Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.

Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.

Осциллограф – это своего рода телевизор, который показывает электрические сигналы.

Как работает осциллограф?

Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.

На схеме не показаны только два блока питания : высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка ) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор , который служит для настройки осциллографа и подготовки его к работе.

Исследуемый сигнал подаётся на вход "Y " канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.

В комплект любого осциллографа входят делители 1: 10 и 1: 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1: 10.

Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.

С выхода входного делителя сигнал поступает на предварительный усилитель . Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины "Y " и обеспечивает отклонение луча по вертикали.

Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины "X " ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление ("Время/дел"), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).

Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени . Переключатель синхронизации имеет следующие положения:

    Синхронизация от исследуемого сигнала.

    Синхронизация от сети.

    Синхронизация от внешнего источника.

Первый вариант наиболее удобный и он используется чаще всего.

Осциллограф С1-94.

Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.

В отличие от своих более "навороченных" собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.

Справа от экрана сверху вниз.

    Ручка: «Фокус».

    Ручка «Яркость».

    Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.

  • Сеть ». Кнопка включения прибора.

  • Кнопка режима «Ждущ-Авт ».

    Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.

    Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.

    Кнопка установки синхронизации «Внутр-Внешн ».

    Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.

    Кнопка выбора "Открытого" и "Закрытого" входа.

    Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем "Переменный и постоянный". Этот режим называется "Открытым", так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.

    При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать "закрытый" вход (~ ). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.

    Клемма «корпус» служит для заземления корпуса прибора. Это делается в целях безопасности. В условиях домашней мастерской порой нет возможности заземлить корпус прибора. Поэтому приходится работать без заземления. При этом важно помнить, что во включенном состоянии на корпусе осциллографа может быть потенциал напряжения. При касании корпуса может "дёрнуть". Особенно опасно дотрагиваться одной рукой до корпуса осциллографа, а другой рукой до батарей отопления или других работающих электроприборов. В таком случае опасный потенциал с корпуса пройдёт через ваше тело ("рука" - "рука") и вы получите электрический удар! Поэтому при работе осциллографа без заземления желательно не дотрагиваться до металлических частей корпуса. Это правило справедливо и для прочих электроприборов с металлическим корпусом.

    По центру лицевой панели переключатель «развёртка» - Время/дел . Именно этот переключатель управляет работой генератора развёртки.

    Чуть ниже располагается переключатель входного делителя (аттенюатора) - V/дел . Как уже говорилось, при исследовании сигнала с неизвестной амплитудой, необходимо выставить максимально возможное значение V/дел. Так для осциллографа С1-94 нужно установить переключатель в положение 5 (5V/дел. ). В таком случае одна клетка на координатной сетке экрана будет равна 5-ти вольтам. Если ко входу "Y" осциллографа подключить делитель с коэффициентом деления 1 к 10 (1: 10), то одна клетка будет равна 50-ти вольтам (5V/дел. * 10 = 50V/дел.).

Также на панели осциллографа имеются:

В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.

Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.